Higgs Boson Self-Coupling Measurements Using Ratios of Cross Sections

Florian Goertz

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Theory Seminar Fermilab May 16, 2013

FG, Papaefstathiou, Yang, Zurita, 1301.3492

Outline

- Motivation
- Higgs-Pair Production Analysis
 - → Different decay channels
 - → Dissection of the cross section
 - → Theoretical Errors Ratio of cross sections
 - → Variation with self coupling and top yukawa
- Expected Constraints on Trilinear Self Coupling
- Outlook and Conclusions

Have discovered a new particle

Have discovered a new boson

• Have discovered a new scalar

Have discovered a Higgs boson

Have discovered a Higgs boson

Is it the SM-Higgs Boson?

Is it *the* SM-Higgs Boson?

Measure further properties like decay rates to

other SM fields

Is it the SM-Higgs Boson?

Measure further properties like its decay rates to other SM fields

Is it the SM-Higgs Boson?

Measure self couplings!

Is it the SM-Higgs Boson?

Measure self couplings!

$$V(H) = \frac{1}{2}M_H^2H^2 + \lambda_{HH}vH^3 + \frac{1}{4}\lambda_{HHH}H^4$$

Is it the SM-Higgs Boson?

Measure self couplings!

consistent with SM predictions or signs of NP?

$$V(H) = \frac{1}{2}M_H^2H^2 + \lambda_{HH}vH^3 + \frac{1}{4}\lambda_{HHH}H^4$$

$$\lambda_{HHH}^{SM} = \lambda_{HHHH}^{SM} = \frac{M_H^2}{2v^2} \approx 0.13$$

Is it the SM-Higgs Boson?

Measure self couplings!

consistent with SM predictions or signs of NP?

$$V(H) = \frac{1}{2}M_H^2H^2 + \lambda_{HH}vH^3 + \frac{1}{4}\lambda_{HHH}H^4$$

 ${
m M}_H \simeq 125\,{
m GeV}$ established @LHC

Is it the SM-Higgs Boson?

Measure self couplings!

consistent with SM predictions or signs of NP?

$$V(H) = \frac{1}{2}M_H^2H^2 + \lambda_{HH}vH^3 + \frac{1}{4}\lambda_{HHH}H^4$$

 λ_{HHH} can be measured in Higgs-pair production

Is it *the* SM-Higgs Boson?

Measure self couplings!

consistent with SM predictions or signs of NP?

$$V(H) = \frac{1}{2} M_H^2 H^2 + \lambda_{HHH} v H^3 + \frac{1}{4} \lambda_{HHHH} H^4$$
 Triple Higgs production -Extremeley challenging @(V)LHC 0.06 fb @ LHC14 9.45 fb @ VLHC (200 TeV) Plehn, Rauch, hep-ph/0507321

Florian Goertz

Measuring λ using Ratios of Cross Sections

Higgs-Pair Production Analysis

Higgs-Pair Production

• Most important production mechanism: gg o HH

Eboli, Marques, Novaes, Natale, PLB 197(1987)269; Glover, van der Bij, NPB 309(1988)282 Dawson, Dittmaier and M. Spira, PRD 58(1998)115012

$$\sigma(gg \to HH)_{\rm LO} \sim 17 \, {\rm fb}$$

 $\sigma(gg \to HH)_{\rm NLO} \sim 33 \, {\rm fb}$

14TeV LHC M_H~125 GeV

Theoretical error (mostly scale variation): ~ 20% @NLO

Higgs-Pair Production

• Other production channels $qq' \to HHqq', VHH, t\bar{t}HH$ ~10-30 times smaller (neglect in following)

See [e.g.] Baglio, Djouadi, Grober, Muhlleitner, Quevillon, Spira, 1212.5581, and refs. therein

Florian Goertz

Measuring λ using Ratios of Cross Sections

Discovery potential for LHC studied in different channels

Papaefstathiou, Yang, Zurita, 1209.1489
Hadronic modes dominate

Measuring λ using Ratios of Cross Sections

Discovery potential for LHC studied in different channels

• Before 2008:

@600fb-1

only $HH\to b\bar b\gamma\gamma$ promising (for M_H~120 GeV): S/B=6/12.5 \Longrightarrow 1.5 σ Baur, Plehn, Rainwater, hep-ph/0310056

Discovery potential for LHC studied in different channels

Before 2008:

@600fb-1

only $HH\to b\bar b\gamma\gamma$ promising (for M_H~120 GeV): S/B=6/12.5 \Longrightarrow 1.6 σ Baur, Plehn, Rainwater, hep-ph/0310056

• After 2008:

Boosted jet+substructure techniques
Butterworth, Davison, Rubin, Salam, 0802.2470

 $HH \rightarrow b\bar{b}W^+W^-$

$$HH \rightarrow b\bar{b}\tau^+\tau^-$$

Dolan, Englert, Spannowsky, 1206.5001

$$S/B=57/119 \rightarrow 4.85 \sigma$$

Papaefstathiou, Yang, Zurita, 1209.1489

$$S/B=12/8 \implies 3.3 \sigma$$

Florian Goertz

Measuring λ using Ratios of Cross Sections

In $b\bar{b}\gamma\gamma$ analysis, expected LHC constraints on λ have been derived, using fits to the visible mass distribution

- Optimistic assumptions for background subtraction
- Need good knowledge of shapes, low number of events...

define
$$\lambda \equiv \lambda_{HHH}/\lambda_{HHH}^{SM}$$

$$\lambda \in (0.26, 1.94) @ 600 \,\text{fb}^{-1}, \quad \lambda \in (0.54, 1.52) @ 6000 \,\text{fb}^{-1}(\text{SLHC})$$

• In $b\bar{b}\gamma\gamma$ analysis, expected LHC constraints on λ have been derived, using fits to the visible mass distribution

- Optimistic assumptions for background subtraction
- Need good knowledge of shapes, low number of events...

define
$$\lambda \equiv \lambda_{HHH}/\lambda_{HHH}^{SM}$$

$$\lambda \in (0.26, 1.94) @ 600 \,\mathrm{fb}^{-1}, \quad \lambda \in (0.54, 1.52) @ 6000 \,\mathrm{fb}^{-1}(\mathrm{SLHC})$$

• In promising $b\bar{b}\tau^+\tau^-$, $b\bar{b}W^+W^-$ only established these channels for discovering HH production, no limits on λ

Higgs-Pair Production

- In the following derive expected constraints on λ for M_H ~125 GeV, using the most promising channels at the 14TeV LHC @600fb-1, 3000fb-1
- Relatively low number of signal events (or difficult final states), control shapes of backgrounds/signal?
 - Use total cross section, try to reduce theoretical error
- Study dependence on y_t

$$\sigma_{HH}^{LO} = |\sum_{q=t,b} (\alpha_q C_{q,\text{tri}}^{(1)} + \beta_q C_{q,\text{box}}^{(1)})|^2 + |\sum_{q=t,b} \gamma_q C_{q,\text{box}}^{(2)}|^2$$

In the SM:
$$\alpha_q = \lambda y_q$$
, $\beta_q = \gamma_q = y_q^2$

$$\sigma_{HH}^{LO} = |\sum_{q=t,b} (\alpha_q C_{q,\text{tri}}^{(1)} + \beta_q C_{q,\text{box}}^{(1)})|^2 + |\sum_{q=t,b} \gamma_q C_{q,\text{box}}^{(2)}|^2$$

In the SM: $\alpha_q = \lambda y_q$, $\beta_q = \gamma_q = y_q^2$

$$\sigma_{HH}^{\text{LO}}[\text{fb}] = 5.22\lambda^2 y_t^2 - 25.1\lambda y_t^3 + 37.3y_t^4 + \mathcal{O}(y_b y_t^2 \lambda_{HH})$$

$$\sigma_{HH}^{\text{NLO}}[\text{fb}] = 9.66\lambda^2 y_t^2 - 46.9\lambda y_t^3 + 70.1y_t^4 + \mathcal{O}(y_b y_t^2 \lambda_{HH})$$

Fits obtained from <code>hpair</code>, <code>http://people.web.psi.ch/spira/hpair/</code>, $y_t \equiv y_t/y_t^{SM}$ using MSTW2008lo68cl and MSTW2008nlo68cl pdfs

Florian Goertz

Measuring λ using Ratios of Cross Sections

off-shell Higgs!

~0.2% effect (in SM)

$$\sigma_{HH}^{\text{LO}}[\text{fb}] = 5.22\lambda^2 y_t^2 - 25.1\lambda y_t^3 + 37.3y_t^4 + \mathcal{O}(y_b y_t^2 \lambda_{HHH})$$

$$\sigma_{HH}^{\text{NLO}}[\text{fb}] = 9.66\lambda^2 y_t^2 - 46.9\lambda y_t^3 + 70.1y_t^4 + \mathcal{O}(y_b y_t^2 \lambda_{HHH})$$

Fits obtained from <code>hpair</code>, <code>http://people.web.psi.ch/spira/hpair/</code>, $y_t \equiv y_t/y_t^{SM}$ using MSTW2008lo68cl and MSTW2008nlo68cl pdfs

Florian Goertz

Measuring λ using Ratios of Cross Sections

 $\lambda_{min} \approx 2.5 \, y_t$

Symmetric about minimum Focus on $\lambda \in (-1.0, \lambda_{min})$

$$\sigma_{HH}^{\text{NLO}}[\text{fb}] = 9.66\lambda^2 y_t^2 - 46.9\lambda y_t^3 + 70.1y_t^4 + \mathcal{O}(y_b y_t^2 \lambda_{HHH})$$

- Model dependence of analysis? Beyond consistency check of SM?
- Assume $\mathcal{L} = \mathcal{L}_{\text{SM}}$ everywhere to leading approximation besides potentially in the $(D \leq 4)$ Higgs potential and the (SM-like) Yukawa couplings, where allow for $\lambda \neq 1, y_t \neq 1$
- Realized e.g. in 2HDM, Higgs-Portal models in certain parts of parameter-space

Theoretical Errors and Ratios

- Ratio of cross sections $C_{HH} = \frac{\sigma(gg \to HH)}{\sigma(gg \to H)} \equiv \frac{\sigma_{HH}}{\sigma_{H}}$ expected to be more accurately determined theoretically than double-Higgs cross section itself A. Djouadi, 1208.3436
- Both gluon-gluon initiated and expected to feature similar higher order QCD corrections (initial state gluon radiation)
 - → QCD uncertainties drop out to some extent
- Check in following

 μ in μ is μ in μ in

• Error due to scale variation significantly reduced in ratio

$$\Delta_{\sigma^{\text{LO}}} = \pm (20 - 25)\% \to \Delta_{C_{HH}^{\text{LO}}} \simeq \pm 9\%$$

(similar results if $M_{HH} \rightarrow M_{H}$)

used: M. Spira, hpair, HIGLU, hep-ph/9510347

Error due to scale variation significantly reduced in ratio
 ,

$$\mu \in [0.5\mu_0, 2\mu_0] \mu_0 = M_H(M_{HH})$$

$$\Delta_{\sigma^{\rm NLO}}^{\rm scale} \simeq \pm 17\% \rightarrow \Delta_{C_{HH}}^{\rm scale} \simeq \pm 1.5\%$$

(similar results if $M_{HH} \rightarrow M_{H}$)

- Verification that uncertainty due to the QCD corrections (partially) cancels: K-factors in the individual cross sections are large, but also very similar ~2
 - Central value of the ratio only decreases by small amount from LO (\sim 1.25) to NLO (\sim 1.0)
- Indication that higher order corrections (NNLO) are likely to change ratio by an even smaller fraction, whereas single Higgs production cross section has K-factor of ~1.5 when compared to NLO LHC Higgs Cross Section Working Group, 1101.0593
- Supports reduced size of theoretcial error found in scale variation

Combining scale variation and pdf errors in quadrature

$$\Rightarrow \Delta_{C_{HH}^{\rm NLO}} \sim \mathcal{O}(\pm 3\%)$$

see also Shao, Li, Li, Wang for threshold resummation in SCET

- To be compared with $\Delta_{\sigma_{HH}^{
 m NLO}} \simeq \pm 17\%$
- Conservative assumption for the following:

$$\Delta_{C_{HH}^{\text{NLO}}} = \pm 5\%$$
, $\Delta_{\sigma_{HH}^{\text{NLO}}} = \pm 20\%$

Variation with Self-Coupling and Top-Quark Yukawa

• Negative values of λ can be excluded sooner

Florian Goertz

Variation with Self-Coupling and Top-Quark Yukawa

- Strong variation with top yukawa
- ... which is only expected to be known up to 15% at LHC after 300fb⁻¹ @14 TeV Peskin, 1207.2516

$$y_t \to -y_t \text{ via } \lambda \to -\lambda$$

 $\lambda = 1, M_H = 125 \text{ GeV, LHC} = 14 \text{ TeV, MSTW2008nlo68cl}$

Florian Goertz

Expected Constraints on Trilinear Self Coupling

Constraining the Self-Coupling

- Use theoretically more stable ratio of cross sections $C_{\rm HH}$ to derive expected constraints on λ
- Furter benefit when using C_{HH}:
 Experimental uncertainties can also be reduced, e.g. some systematic uncertainties are expected to cancel (Luminosit uncertainty)

Assumptions for Experimental Uncertainties

$$\sigma_{HH}^{b\bar{b}xx} \equiv 2 \sigma_{HH} \times \mathrm{BR}(b\bar{b}) \times \mathrm{BR}(xx)$$
 $\sigma_{H}^{b\bar{b}} \equiv \sigma_{H} \times \mathrm{BR}(b\bar{b})$

$$C_{HH}^{\text{exp.}} = \left. \frac{\sigma_{HH}^{b\bar{b}xx}}{\sigma_{H}^{b\bar{b}} \times BR(xx)} \right|_{\text{exp.}}$$

$$\left(\frac{\Delta C_{HH}}{C_{HH}}\right)^2 = \left(\frac{\Delta \sigma_{HH}^{b\bar{b}xx}}{\sigma_{HH}^{b\bar{b}xx}}\right)^2 + \left(\frac{\Delta BR(xx)}{BR(xx)}\right)^2 + \left(\frac{\Delta \sigma_{H}^{b\bar{b}}}{\sigma_{H}^{b\bar{b}}}\right)^2$$

Assumptions for Experimental Uncertainties

$$\sigma_{HH}^{b\bar{b}xx} \equiv 2 \sigma_{HH} \times \text{BR}(b\bar{b}) \times \text{BR}(xx)$$

$$\sigma_{H}^{b\bar{b}} \equiv \sigma_{H} \times \text{BR}(b\bar{b})$$

$$C_{HH}^{\text{exp.}} = \left. \frac{\sigma_{HH}^{b\bar{b}xx}}{\sigma_{H}^{b\bar{b}} \times BR(xx)} \right|_{\text{exp.}}$$

$$\left(\frac{\Delta C_{HH}}{C_{HH}}\right)^2 = \left(\frac{\Delta \sigma_{HH}^{b\bar{b}xx}}{\sigma_{HH}^{b\bar{b}xx}}\right)^2 + \left(\frac{\Delta BR(xx)}{BR(xx)}\right)^2 + \left(\frac{\Delta \sigma_{H}^{b\bar{b}}}{\sigma_{H}^{b\bar{b}}}\right)^2$$

Add 5% theoretical error in quadrature

Actually better to access than error on BR alone, which enters the cross section itself

Florian Goertz

Assumptions for Experimental Uncertainties

$$\left(\frac{\Delta C_{HH}}{C_{HH}}\right)^2 = \left(\frac{\Delta \sigma_{HH}^{b\bar{b}xx}}{\sigma_{HH}^{b\bar{b}xx}}\right)^2 + \left(\frac{\Delta BR(xx)}{BR(xx)}\right)^2 + \left(\frac{\Delta \sigma_{H}^{b\bar{b}}}{\sigma_{H}^{b\bar{b}}}\right)^2$$

 $\begin{array}{c|c} \Delta\sigma_{HH}^{b\bar{b}xx}/\sigma_{HH}^{b\bar{b}xx} \text{ obtained from} \\ b\bar{b}\tau^+\tau^- & b\bar{b}W^+W^- & b\bar{b}\gamma\gamma \\ \text{analyses via } \Delta S = \sqrt{N+B} \\ \text{after bringing channels to} \\ \text{equal footing} \end{array}$

$$\Delta \sigma_H^{bb} \sim \pm 20\%$$

$$\Delta BR(\tau^+\tau^-) \sim \pm 12\%$$

$$\Delta BR(W^+W^-) \sim \pm 12\%$$

$$\Delta BR(\gamma\gamma) \sim \pm 16\%$$

"European Strategy for Particle Physics" https://indico.cern.ch/contributionDisplay.py? contribId=144&confId=175067, 2012

Assume no improvement beyond 300 fb⁻¹

Process	$S/B(600 \text{ fb}^{-1})$	$\Delta C_{HH}/C_{HH} \ (600 \ {\rm fb}^{-1})$	$\Delta C_{HH}/C_{HH} \ (3000 \ {\rm fb}^{-1})$
$b\bar{b}\tau^+\tau^-$	50/104	0.400	0.279
$b\overline{b}W^+W^-$	11.2/7.4	0.513	0.314
$\overline{b}\overline{b}\gamma\gamma$	6/12.5	0.964	0.490

Florian Goertz

- We now want to use C_{HH} to constrain the parameters {p_i} of a model
- Expected exclusion in parameter-space depends on true parameters of the model

Deriving Constraints – General Strategy

- Calculate C_{HH} as a function of the set of parameters $\{p_i\}$ (e.g. new couplings/Wilson coefficients, masses) as well as theoretical error
- Estimate expected experimental errors arising from measurements of components that comprise $C_{HH}^{\mathrm{exp.}}$

Deriving Constraints – General Strategy

- Calculate C_{HH} as a function of the set of parameters $\{p_i\}$ (e.g. new couplings/Wilson coefficients, masses) as well as theoretical error
- Estimate expected experimental errors arising from measurements of components that comprise $C_{HH}^{\mathrm{exp.}}$
- Question to address: Given an assumption for the 'true' values of the model parameters, what is the constraint we *expect* to impose on the parameters through Higgs-pair production?

- In the following: simplified framework $\{p_i\} = \{\lambda, y_t\}$
- Start with assuming $y_t = y_{t, \text{true}} = 1$
- Draw curves of λ that lead to a theoretically predicted cross section of one or two standard deviations away from the true cross section, derived with the underlying true $\lambda_{\rm true}$
- In the following focus on $\lambda \in (-1.0, \lambda_{min} \sim 2.5)$

Expect to exclude values outside regions at 1σ (2σ)

Florian Goertz

e.g. $\lambda_{\text{true}} = 1 \Rightarrow \text{expect to constrain } \lambda \in (0.57, 1.64) @ 68\%\text{CL } (600\,\text{fb}^{-1})$ Florian Goertz Measuring λ using Ratios of Cross Sections

cross section itself: 20 % theoretical Error Florian Goertz

Expect additional errors - not present in $C_{_{\it HH}}$

Process	$600 \text{ fb}^{-1} (2\sigma)$	$600 \text{ fb}^{-1} (1\sigma)$	$3000 \; {\rm fb^{-1}} \; 2\sigma$	$3000 \; {\rm fb^{-1}} \; 1\sigma$
$b\bar{b}\tau^+\tau^-$	(0.22, 4.70)	(0.57, 1.64)	(0.42, 2.13)	(0.69, 1.40)
$b\overline{b}W^+W^-$	(0.04, 4.88)	(0.46, 1.95)	(0.36, 4.56)	(0.65, 1.46)
$b \overline{b} \gamma \gamma$	(-0.56, 5.48)	(0.09, 4.83)	(0.08, 4.84)	(0.48, 1.87)

assume $\lambda_{\text{true}} = y_{t,\text{true}} = 1$, for disconnected regions only show below $\lambda_{\text{min}} \simeq 2.43$

- Possible to constrain trilinear self coupling to be positive at 95% CL with 600fb⁻¹ using C_{HH}
- Comparable for $b\bar{b}\gamma\gamma$ to shape analysis $\lambda\in(0.26,1.94)$ @ $600\,{\rm fb}^{-1}$ Baur, Plehn, Rainwater, hep-ph/0310056 actually also $\lambda\in(2.98,4.66),$

optimistic asmpt

Process	$600 \text{ fb}^{-1} (2\sigma)$	$600 \text{ fb}^{-1} (1\sigma)$	$3000 \; {\rm fb^{-1}} \; 2\sigma$	$3000 \; {\rm fb^{-1}} \; 1\sigma$
$b\bar{b}\tau^+\tau^-$	(0.22, 4.70)	(0.57, 1.64)	(0.42, 2.13)	(0.69, 1.40)
$b\overline{b}W^+W^-$	(0.04, 4.88)	(0.46, 1.95)	(0.36, 4.56)	(0.65, 1.46)
$b\overline{b}\gamma\gamma$	(-0.56, 5.48)	(0.09, 4.83)	(0.08, 4.84)	(0.48, 1.87)

assume $\lambda_{\text{true}} = y_{t,\text{true}} = 1$, for disconnected regions only show below $\lambda_{\text{min}} \simeq 2.43$.

- Possible to constrain trilinear self coupling to be positive at 95% CL with $600 {\rm fb^{-1}}$ using ${\rm C}_{\rm HH}$
- Comparable for $b\bar{b}\gamma\gamma$ to shape analysis $\lambda\in(0.26,1.94)$ @ $600\,{
 m fb}^{-1}$ Baur, Plehn, Rainwaler, hep-ph/0310056
- Improve predictions due to new channels

 Combination of channels yields ~ +30% and ~ -20% accuracy with 3000fb⁻¹ actually also $\lambda \in (2.98, 4.66),$

optimistic asmpt

Process	$600 \text{ fb}^{-1} (2\sigma)$	$600 \text{ fb}^{-1} (1\sigma)$	$3000 \; {\rm fb^{-1}} \; 2\sigma$	$3000 \; {\rm fb^{-1}} \; 1\sigma$
$b\bar{b}\tau^+\tau^-$	(0.22, 4.70)	(0.57, 1.64)	(0.42, 2.13)	(0.69, 1.40)
$b\bar{b}W^+W^-$	(0.04, 4.88)	(0.46, 1.95)	(0.36, 4.56)	(0.65, 1.46)
$b \overline{b} \gamma \gamma$	(-0.56, 5.48)	(0.09, 4.83)	(0.08, 4.84)	(0.48, 1.87)

assume $\lambda_{\text{true}} = y_{t,\text{true}} = 1$, for disconnected regions only show below $\lambda_{\text{min}} \simeq 2.43$.

- Combination of channels yields $\sim +30\%$ and $\sim -20\%$ accuracy with $3000 {\rm fb}^{\text{-1}}$
- Compare to ILC ILC-TDR (2012, to be published)

$$\sqrt{s} = 500 \,\text{GeV}, \quad \mathcal{L} = 2000 \,\text{fb}^{-1} \sim 40\%$$

$$\sqrt{s} = 1000 \,\text{GeV}, \, \mathcal{L} = 1000 \,\text{fb}^{-1} \sim 25\%$$

• y_t only known to O(15%) after 300fb⁻¹ @14 TeV Peskin, 1207.2516

assume $y_{t,\text{true}} = \lambda_{\text{true}} = 1$, $\mathcal{L} = 600 \text{ fb}^{-1}$

Florian Goertz

 $y_t = 0.85$ yields $\lambda \in (0.2, 1.1)$, whereas $y_t = 1.15$ implies $\lambda \in (1.1, \sim 2.4)$ accurate knowledge of y_t is essential

Florian Goertz

Outlook and Conclusions

Outlook

- Do full "model independent" survey of double Higgs production, supplementing the SM Lagrangian with dimension 6 operators
- Use equations of motion to arrive at most appropriate basis for the analysis

Outlook

- Employ precision constraints to further reduce the operator basis
- Use information from single Higgs production to constrain operators and derive expectations for double-Higgs production
- Study different scenarios

Conclusions

- Examined theoretical error on ratio of dobule-tosingle Higgs production cross section C_{HH}
- Using this ratio, derived expected exclusions on the trilinear H coupling in the $b\bar{b}\gamma\gamma$, $b\bar{b}W^+W^-$, $b\bar{b}\tau^+\tau^-$ channels
- Obtained the most precise expected determination of the Higgs trilinear self-coupling at the 14TeV LHC: -20/+30% achievable (in the SM)
- Good knowledge of top-quark yukawa important
- Outlook: Full operator analysis of HH production

Thank you for the attention!